Dipl.Met. Dr.


Althanstraße 14 (UZA II), 1090 Wien
Raumnummer: 2G555
T: +43-1-4277-537 77

© Philipp Griewank

Research Interests

  • Data assimilation and observation impact assesment
  • Parametrization development for clouds and convection
  • Multi-phase thermodynamics and geophysical fluid dynamics
  • Sea-ice thermodynamics & dynamics



Griewank, Heus, Lareau, Neggers (2020): Size-dependence in chord characteristics from simulated and observed continental shallow cumulus, Atmospheric Chemistry and Physics,

Neggers, Griewank, Heus (2018): Powerlaw scaling in the internal variability of cumulus cloud size distributions due to subsampling and spatial organization. Journal of the Atmospheric Sciences,

Griewank, Schemann, Neggers (2018): Evaluating and improving a PDF cloud scheme using high-resolution super-large-domain simulations. Journal of Advances in Modeling Earth Systems (JAMES),

Wiese, Griewank and Notz (2015): On the thermodynamics of melting sea ice versus melting freshwater ice, Annals of Glaciology,

Griewank and Notz (2015): A 1-D modelling study of Arctic sea-ice salinity, The Cryosphere,

Griewank and Notz (2013): Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage, Journal of Geophysical Research Oceans,


Discussion and conference papers

Neggers, Griewank (2020): A binomial stochastic framework for efficiently modeling discrete statistics of convective populations,

Bridges, Riska, Griewank, Lattes, Rampal, Bouillon (2018): Constituents of Ice Navigation Systems from Ship Based Observations during Ice Transit of Kara Sea,  24th IAHR International Symposium on Ice

Vancoppenolle, Notz, Vivier, Tison,  Delille,  Carnat, Zhou, Jardon, Griewank, Lourenco, and Haskell (2013): Technical Note: On the use of the mushy-layer Rayleigh number for the interpretation of sea-ice-core data, The Cryosphere Discussions,


Diploma Thesis

Griewank, P. J. (2010): A Conservative Scheme for the Multi-layer Shallow-water System based on Nambu Representation and the ICON Grid, Freie Univerität Berlin.


PhD Thesis

Griewank, P. J. (2013): A 1D model study of brine dynamics in sea ice, Max Planck Institute for Meteorology, Hamburg.